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Diastereoselectivity in an electrocyclization reaction
of cyclopentadienones
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Abstract—Two cyclopentadienones were generated and both underwent conrotatory electrocyclization as expected based on Wood-
ward–Hoffmann rules. This result lends support to the idea that these ring-closing reactions are, in fact, pericyclic processes.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. Cyclization through deantiaromatization.
Electrocyclic reactions represent a powerful method for
creating rings efficiently and stereoselectively.1 A num-
ber of strategies are available for conducting and cata-
lyzing such reactions. Recently, we reported the use of
‘deantiaromatization’ as a driving force for the electro-
cyclization of a set of cyclopentadienones, in conjunc-
tion with studies ultimately directed at the synthesis of
hamigeran B.2 For example, treatment of 1 with trieth-
ylamine in trifluoroethanol (TFE) for 2 days at 70 �C
resulted in the formation of 4 in 78% yield. Presumably,
cyclopentadienone 2 was generated from 1 by a 1,4-elim-
ination. Cyclization and trapping then proceeded to
afford 4 as shown in Scheme 1.

As a pericyclic process, this cyclization should proceed
stereospecifically in a conrotatory fashion, as it involves
8p-electrons. To probe this, we prepared two isomeric
precursors and examined their cyclizations to establish
whether this is the case. This Letter contains the details
of that study.

The two substrates required for this study were prepared
from the halogen–metal exchange reaction between 5
and 6 with n-BuLi followed by transmetalation with
CeCl3.3 The organocerium reagents were reacted with
7 and the products 8 and 9 were obtained in 85% and
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16% (80% based on recovered starting material) yields
after hydrolysis (Scheme 2).4 The low (unoptimized)
yield for 9 can be ascribed to steric effects, but may also
be due to the quality (e.g., dryness) of the CeCl3.5 In our
hands, drying protocols for this salt do not always pro-
duce consistent results.6

With the pure E and Z cyclopentenones in hand, electro-
cyclic reactions were carried out under standard reaction
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Scheme 3. Cyclization of 8.
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conditions (50 �C, 7 days or 70 �C, 2 days).7 When E
isomer 8 (96% E; 24:1, E:Z)8 was treated with triethyl-
amine at 50 �C for 7 days, the desired cyclization adduct
10 was isolated in 43% yield with nearly complete diaste-
reoselectivity (10:1), accompanied by 33% recovered
starting material and some cyclopentadienone dimer
11 (Scheme 3).9 The diastereoselectivity in the formation
of 10 was not complete as the starting material 8 con-
tained some 9 (4%). The change in the product ratio
vis-à-vis the ratio of starting materials suggested that 9
reacted more efficiently than 8. The ratio of 8, 10, and
11 in the crude reaction mixture was 0.39:0.51:0.10 by
1H NMR.

The amount of dimer increased significantly when 8 was
stirred in TFE at 70 �C for 2 days. The expected product
10 was isolated in 39% yield and (8, 10, and dimer:
0.33:0.48:0.19). The stereochemistry of 10 was deter-
mined by X-ray crystallography and is consistent with
our proposed conrotatory cyclization mechanism.10

NMR data (Fig. 1) in solution are also in agreement
with the X-ray data as evident from the observed
NOE signals between H2 and the methyl group and also
between the H3 and H4 protons.
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Figure 1. NOE correlations for 10 (top) and 12 (bottom). Dashed lines
indicate weak NOEs.
In contrast to 8, when the Z isomer 9 was treated with

base, the reaction was surprisingly clean. Product 12
was isolated in 56% yield as a single diastereomer,
together with 27% recovered starting material.7,11 Since
the product could not be crystallized, the stereochemical
assignment of 12 was based on the analysis of NOESY
experiments and scalar coupling constants.12 First, the
observed 3JH3–H4 coupling constant of 2.2 Hz agrees
better with the computed equatorial–equatorial con-
stant, using the Hassnoot–Altona empirical equation13

of 2.0 Hz. Placing the trifluoroethoxy group in the equa-
torial position gives an equatorial axial computed 3J
constant of 4.4 Hz; secondly, no cross peak between
H2 and H4 was observed in the NOESY experiment.
We have investigated the proposed pericyclic processes
by means of DFT computations. An unrestricted bro-
ken-spin-symmetry (UBS)14 procedure was used for
structures with a biradicaloid character. The structures
were optimized at the B3LYP15/6-31G* level upon
which single point energies were computed at B3LYP/
6-311+G**. Solvation effects in trifluoroethanol were
modeled using the continuum PCM16 model, employing
ethanol parameters as provided in GAUSSIANAUSSIAN03 but with
a relative permitivity e of 26.73 and effective solvent
radius of 0.3 Å; single point energies were computed at
the PCM-B3LYP/6-311+G** level as well. Harmonic
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frequencies were computed on all optimized structures
to verify the nature of the stationary points and to ob-
tain thermochemical quantities. Reported free energies
DG298.15 K were obtained by inclusion of B3LYP/6-
31G* thermochemical corrections in the B3LYP/6-
311+G** computations.17

The computations (Scheme 4) help elucidate the some-
what unexpected finding that 9 is better behaved than
8. This can be rationalized in terms of the relative
energies of the zwitterionic intermediates 21 and 22.
Although the position of the methyl group over the p-
system in transition state 20 results in a slightly higher
activation free energy for the formation of zwitterion
22 as compared to 21, formation of the former is less
endothermic, which, as a consequence, results in a faster
overall process, making side reactions less competitive.
Alternatively, the electrocyclization might be reversible.
The computational data suggest reversibility should be
more important for the cyclization of 13 than 14. This
would result in the regeneration of 13, from zwitterion
21, allowing it to engage in side reactions and thus
lowering the yield of 10. As previously observed,2 the
conrotatory process for 13 and 14 is kinetically and ther-
modynamically favored over the disrotatory cyclizations
involving transition states 15 and 16, respectively.

In conclusion, we uncovered new evidence for an
8p-electron conrotatory mechanism for the cyclization
reaction of cyclopentadienones. Further studies of the
mechanism of this process and applications to synthesis
are underway.
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